在多目标优化中,一组具有各种功能的可扩展测试问题使研究人员可以调查和评估不同优化算法的能力,因此可以帮助他们设计和开发更有效,更有效的方法。现有的测试问题套件主要集中在所有目标彼此完全冲突的情况下。在这种情况下,目标空间中的M-Obigntive优化问题具有(M-1)维帕累托前沿。但是,在某些优化问题中,目标之间可能存在意外的特征,例如冗余。某些目标的冗余可能会导致具有堕落的帕累托正面的多物镜问题,即,$ m $ - 目标问题的帕累托正面的尺寸小于(M-1)。在本文中,我们系统地研究了退化的多目标问题。我们抽象了退化问题的三个一般特征,这些特征未在文献中进行制定和系统地研究。基于这些特征,我们提出了一组测试问题,以支持在具有冗余目标的情况下对多目标优化算法进行研究。据我们所知,这项工作是第一项明确提出退化问题的三个特征,从而使所得的测试问题的一般性具有一般性的特征,与为特定目的设计的现有测试问题相比(例如,可视化),则允许所得的测试问题。 )。
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译
When using LiDAR semantic segmentation models for safety-critical applications such as autonomous driving, it is essential to understand and improve their robustness with respect to a large range of LiDAR corruptions. In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions. To rigorously evaluate the robustness and generalizability of current approaches, we propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy. Then, we systematically investigate 11 LiDAR semantic segmentation models, especially spanning different input representations (e.g., point clouds, voxels, projected images, and etc.), network architectures and training schemes. Through this study, we obtain two insights: 1) We find out that the input representation plays a crucial role in robustness. Specifically, under specific corruptions, different representations perform variously. 2) Although state-of-the-art methods on LiDAR semantic segmentation achieve promising results on clean data, they are less robust when dealing with noisy data. Finally, based on the above observations, we design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications. It is promising that our benchmark, comprehensive analysis, and observations can boost future research in robust LiDAR semantic segmentation for safety-critical applications.
translated by 谷歌翻译
Designing better deep networks and better reinforcement learning (RL) algorithms are both important for deep RL. This work focuses on the former. Previous methods build the network with several modules like CNN, LSTM and Attention. Recent methods combine the Transformer with these modules for better performance. However, it requires tedious optimization skills to train a network composed of mixed modules, making these methods inconvenient to be used in practice. In this paper, we propose to design \emph{pure Transformer-based networks} for deep RL, aiming at providing off-the-shelf backbones for both the online and offline settings. Specifically, the Transformer in Transformer (TIT) backbone is proposed, which cascades two Transformers in a very natural way: the inner one is used to process a single observation, while the outer one is responsible for processing the observation history; combining both is expected to extract spatial-temporal representations for good decision-making. Experiments show that TIT can achieve satisfactory performance in different settings, consistently.
translated by 谷歌翻译
Unbiased learning to rank (ULTR) studies the problem of mitigating various biases from implicit user feedback data such as clicks, and has been receiving considerable attention recently. A popular ULTR approach for real-world applications uses a two-tower architecture, where click modeling is factorized into a relevance tower with regular input features, and a bias tower with bias-relevant inputs such as the position of a document. A successful factorization will allow the relevance tower to be exempt from biases. In this work, we identify a critical issue that existing ULTR methods ignored - the bias tower can be confounded with the relevance tower via the underlying true relevance. In particular, the positions were determined by the logging policy, i.e., the previous production model, which would possess relevance information. We give both theoretical analysis and empirical results to show the negative effects on relevance tower due to such a correlation. We then propose three methods to mitigate the negative confounding effects by better disentangling relevance and bias. Empirical results on both controlled public datasets and a large-scale industry dataset show the effectiveness of the proposed approaches.
translated by 谷歌翻译
Classification using supervised learning requires annotating a large amount of classes-balanced data for model training and testing. This has practically limited the scope of applications with supervised learning, in particular deep learning. To address the issues associated with limited and imbalanced data, this paper introduces a sample-efficient co-supervised learning paradigm (SEC-CGAN), in which a conditional generative adversarial network (CGAN) is trained alongside the classifier and supplements semantics-conditioned, confidence-aware synthesized examples to the annotated data during the training process. In this setting, the CGAN not only serves as a co-supervisor but also provides complementary quality examples to aid the classifier training in an end-to-end fashion. Experiments demonstrate that the proposed SEC-CGAN outperforms the external classifier GAN (EC-GAN) and a baseline ResNet-18 classifier. For the comparison, all classifiers in above methods adopt the ResNet-18 architecture as the backbone. Particularly, for the Street View House Numbers dataset, using the 5% of training data, a test accuracy of 90.26% is achieved by SEC-CGAN as opposed to 88.59% by EC-GAN and 87.17% by the baseline classifier; for the highway image dataset, using the 10% of training data, a test accuracy of 98.27% is achieved by SEC-CGAN, compared to 97.84% by EC-GAN and 95.52% by the baseline classifier.
translated by 谷歌翻译
Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.
translated by 谷歌翻译
Domain adaptation aims to transfer the knowledge acquired by models trained on (data-rich) source domains to (low-resource) target domains, for which a popular method is invariant representation learning. While they have been studied extensively for classification and regression problems, how they apply to ranking problems, where the data and metrics have a list structure, is not well understood. Theoretically, we establish a domain adaptation generalization bound for ranking under listwise metrics such as MRR and NDCG. The bound suggests an adaptation method via learning list-level domain-invariant feature representations, whose benefits are empirically demonstrated by unsupervised domain adaptation experiments on real-world ranking tasks, including passage reranking. A key message is that for domain adaptation, the representations should be analyzed at the same level at which the metric is computed, as we show that learning invariant representations at the list level is most effective for adaptation on ranking problems.
translated by 谷歌翻译
Image and video synthesis has become a blooming topic in computer vision and machine learning communities along with the developments of deep generative models, due to its great academic and application value. Many researchers have been devoted to synthesizing high-fidelity human images as one of the most commonly seen object categories in daily lives, where a large number of studies are performed based on various deep generative models, task settings and applications. Thus, it is necessary to give a comprehensive overview on these variant methods on human image generation. In this paper, we divide human image generation techniques into three paradigms, i.e., data-driven methods, knowledge-guided methods and hybrid methods. For each route, the most representative models and the corresponding variants are presented, where the advantages and characteristics of different methods are summarized in terms of model architectures and input/output requirements. Besides, the main public human image datasets and evaluation metrics in the literature are also summarized. Furthermore, due to the wide application potentials, two typical downstream usages of synthesized human images are covered, i.e., data augmentation for person recognition tasks and virtual try-on for fashion customers. Finally, we discuss the challenges and potential directions of human image generation to shed light on future research.
translated by 谷歌翻译